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Controlling the Two Kinds of Error Rate in  
Selecting an Appropriate Asymmetric MDS Model
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    ASYMMAXSCAL is revisited first, which is a maximum likelihood asymmetric multidimensional scaling 
method recently proposed by Saburi and Chino (2008). It is proven that the likelihood ratio test statistic on the 
quasi-symmetry hypothesis proposed by Caussinus (1965) and that of a marginal homogeneity hypothesis 
suggested by Andersen (1980) are mutually independent statistically. A possible application of this theorem is 
indicated to asymmetric relational data in the context of asymmetric multidimensional scaling.
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1  Introduction

The asymmetric MDS is a method which is specifically 
designed to analyze asymmetric relationships among 
members and display them graphically by plotting each 
member in a certain dimensional space, given asymmetric 
data. For example, degrees of sentiment relationships 
among members in a class measured by a 7-point rating 
scale constitute such a data. Extant major asymmetric MDS 
models are Chino (1978, 1990), Chino and Shiraiwa (1993), 
Constantine and Gower (1978), Escoufier and Grorud 
(1980), Gower (1977), Harshman (1978), Harshman et al. 
(1982), Kiers and Takane (1994), Krumhansl (1978), Okada 
and Imaizumi (1987, 1997), Rocci and Bove (2002), Saburi 
and Chino (2008), Saito (1991), Saito and Takeda(1990), 
Sato (1988), ten Berge (1997), Trendafilov (2002),Weeks 
and Bentler (1982), Young (1975), and Zielman and Heiser 
(1996).
	 Although various asymmetric MDS methods have been 
proposed, these methods have remained only descriptive until 
recently. By contrast, Saburi and Chino (2008) have proposed 
a maximum likelihood method for asymmetric MDS called 
ASYMMAXSCAL, which extends the MAXSCAL proposed 
by Takane (1981) to asymmetric relational data. As with 
Takane’s MAXSCAL, it has three kinds of parameters 
pertaining to the representation model, the error model, and 
the response model. As for the representation model, the 
proximity model of object Oi to object Oj , say, gi j , can 
generally be written as
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Although various asymmetric MDS methods have been proposed, these methods have remained
to be descriptive until recently. By contrast, Saburi and Chino (2008) have proposed a maximum
likelihood method for asymmetric MDS called ASYMMAXSCAL, which extends MAXSCAL by
Takane (1981) to asymmetric relational data. As with MAXSCAL by Takane (1981), it has three
kinds of parameters pertaining to the representation model, the error model, and the response
model. As for the representation model, the proximity model of object Oi to object Oj , say, gij ,
can generally be written as

gij = f(xi,yj , c), (1)

where f(•) is any asymmetric MDS model, xi and yj , respectively, are coordinate vectors of Oi

and Oj , and c is the remaining parameter vector.
As regards the error model, the error-perturbed proximities are written as

τij = gij + eij , eij ∼ N(0, σ2), (2)

where τij is an error-perturbed proximity from Oi to Oj , and eij is an error term.
As for the response model, we assume that subjects place error-perturbed proximities in one

of the M rating scale categories, C1, · · · , CM . Thus, these categories are represented by a set of
ordered intervals with upper and lower boundaries on a psychological continuum:

−∞ = b0 ≤ b1 ≤ · · · ≤ bm ≤ · · · ≤ bM−1 ≤ bM =∞

Accordingly, the probability that the error-perturbed proximity of Oi to Oj falls in Cm is given
by

pijm = prob {bm−1 < τij ≤ bm} . (3)

We assume that

pijm =

 bm

bm−1

φ(τij)dτij , (4)

based on Torgerson’s law of categorical judgment (Torgerson, 1958). Here, φ(τij) denotes the
density of the standard normal distribution. For computational convenience, we approximate it
by the logistic distribution.

We estimate all the parameters pertaining to ASYMMAXSCAL by maximizing the following
joint likelihood of the total observations

L =
n

i=1

n
j=1

M
m=1

p
Yijm

ijm , (5)

1

�(1)

where f (•) is any asymmetric MDS model, x i and y j , 
respectively, are coordinate vectors of Oi and Oj , and c is 
the remaining parameter vector.
	 As regards the error model, the error-perturbed proxim-
ities are written as 
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where 
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 is an error-perturbed proximity from Oi to Oj , 
and ei j is an error term.
	 As for the response model, we assume that subjects place 
error-perturbed proximities in one of the M rating scale 
categories, C1, … , CM. Thus, these categories are repre-
sented by a set of ordered intervals with upper and lower 
boundaries on a psychological continuum:
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based on Torgerson’s law of categorical judgment 
(Torgerson, 1958). Here, 
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Abstract

ASYMMAXSCAL is revisited first, which is a maximum likelihood asymmetric multidi-
mensional scaling method recently proposed by Saburi and Chino (2008). It is proven that the
likelihood ratio test statistic on the quasi-symmetry hypothesis proposed by Caussinus (1965)
and that of a marginal homogeneity hypothesis suggested by Andersen (1980) are mutually
statistically independent. A possible application of this theorem is indicated to asymmetric
relational data in the context of asymmetric multidimensional scaling.

1 Introduction
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dimensional space, given asymmetric data. For example, degrees of sentiment relationships among
members in a class measured by a 7-point rating scale constitute such a data. Extant major
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(1982), Kiers and Takane (1994), Krumhansl (1978), Okada and Imaizumi (1987, 1997), Rocci
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where Yijm denotes the frequency in category Cm, in which 
subjects place the error-perturbed proximity of Oi to Oj.
	 As with any model, ASYMMAXSCAL has various 
advantages and shortcomings. On the one hand, it enables 
us to determine the appropriate scaling level of the data by 
AIC, that is, ordinal, interval, or ratio level. It also enables 
us to determine the appropriate dimensionality of the model 
under study by AIC. Moreover, it enables us to examine 
whether the data are sufficiently asymmetric or not by 
applying some tests for symmetry prior to the scaling of 
objects, and by selecting a model among several candidates 
including some symmetry models, using AIC, on the way to 
the scaling.
	 The reason why we can apply some tests for symmetry is 
as follows. That is, the data obtained by the above method 
is a set of one-way tables, each of which corresponds to a 
frequency distribution of a group of subjects concerning the 
similarity judgment on a directional pair of objects. We call 
it the Type A design data, or the Type A data. If we 
rearrange the Type A data per rating scale category, we get 
M square contingency tables of order n. We call them Type 
B (design) data. It is a bit different from the data obtained 
by traditional designs for the n × n × M table (Agresti, 
2002, Bishop et al., 1975).
	 According to Saburi and Chino (2008), given a Type B 
data, under the null hypothesis,
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asymptotically follows the central χ2-distribution with (M − 1)n(n− 1)/2 degrees of freedom.
By contrast, the traditional conditional symmetry test with the special n×n×M contingency

table, of which test statistic is given by
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with Mn(n− 1)/2 degrees of freedom under the null hypothesis.
At present, ASYMMAXSCAL enables us to select the most appropriate model among several

candidate models which include some variants of symmetry models using AIC. However, such a
model selection method by some information criterion does not consider the nature of the data.
It will be sometimes necessary to select the representation model which reflects the nature of the
data most.

To do this job, it is helpful to utilize various symmetry related tests which have been developed
in the branch of mathematical statistics. Chino and Saburi (2006) attempted to administer these
tests sequentially prior to the scaling step of ASYMMAXSCAL. They include tests for symmetry,
quasi-symmetry, quasi-independence, independence, and some versions of marginal homogeneity.
However, relation of inclusion of these tests is rather complicated. Moreover, in performing such
sequential tests, they have not taken overall statistical errors into account. It will be interesting and
useful to examine whether these tests are mutually statistically independent or not. For simplicity,
we shall hereafter exclusively consider a two-dimensional square contingency table.

There have been a body of literature on the tests of symmetry and related hypotheses. The
major ones may be Bowker (1948), Caussinus (1965), Goodman (1964, 1969, 1970, 1971, 1985),
Hirotsu (1983), Kastenbaum (1960), Lancaster (1951), Read (1977, 1978), Tomizawa (1985, 1992,
1995, 2006), Wall (1976), and Wall and Linert (1976).

However, there exists few literature which considers the statistical independence among test
statistics on these hypotheses. For example, Goodman (1985) discusses the relationships between
several symmetry and related hypotheses with respect to their implications and degrees of freedom
and applied each of these models to a famous 4× 4 cross-classification table. However, he neither
discuss the statistical independence of the test statistics corresponding to these models nor consider
the problem of controlling the errors of the two kinds.
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with Mn (n − 1)/2 degrees of freedom under the null 
hypothesis.
	 At present, ASYMMAXSCAL enables us to select the 
most appropriate model among several candidate models 
which include some variants of symmetry models using 
AIC. However, such a model selection method by some 
information criterion does not consider the nature of the 
data. It will sometimes be necessary to select the represen-
tation model which reflects the nature of the data most.
	 To do this job, it is helpful to utilize various symmetry 
related tests which have been developed in the branch of 
mathematical statistics. Chino and Saburi (2006) attempted 
to administer these tests sequentially prior to the scaling 
step of ASYMMAXSCAL. They include tests for symmetry, 
quasi-symmetry, quasi-independence, independence, and 
some versions of marginal homogeneity. However, the 
relation of inclusion of these tests is rather complicated. 
Moreover, in performing such sequential tests, they have 
not taken overall statistical errors into account. It will be 
interesting and useful to examine whether these tests are 
mutually independent statistically or not. For simplicity, we 
shall hereafter exclusively consider a two-dimensional 
square contingency table.
	 There has been a body of literature on the tests of 
symmetry and related hypotheses. The major ones may be 
Bowker (1948), Caussinus (1965), Goodman (1964, 1969, 
1970, 1971, 1985), Hirotsu (1983), Kastenbaum (1960), 
Lancaster (1951), Read (1977, 1978), Tomizawa (1985, 
1992, 1995, 2006), Wall (1976), and Wall and Linert 
(1976).
	 However, there exists a small amount of literature which 
considers the statistical independence among test statistics 
on these hypotheses. For example, Goodman (1985) 
discusses the relationships between several symmetry and 
related hypotheses with respect to their implications and 
degrees of freedom and applied each of these models to a 
famous 4 × 4 cross-classification table. However, he neither 
discusses the statistical independence of the test statistics 
corresponding to these models nor considers the problem of 
controlling the errors of the two kinds.
	 Tomizawa (1992) points out a hierarchical tree structure 
of some double symmetry hypotheses in addition to the 
symmetry hypothesis and the quasi-symmetry hypothesis, 
and applies each of these models to two sets of cross-classi-
fication table. However, he does not refer to the statistical 
independence of the test statistics, although he compares 
these models using Akaike’s information criterion (Akaike, 
1974).
	 In this paper we show that the LR test statistic on the 
quasi-symmetry hypothesis proposed by Caussinus (1965) 
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and that of a marginal homogeneity hypothesis suggested 
by Andersen (1980) are mutually independent statistically, 
based on the theorems by Basu (1955) and Hogg (1961). As 
a result, we can control the error of the first kind when we 
test them sequentially. Furthermore, we can construct a 
more powerful test than Dunn’s and Holm’s, if we set the 
error rate of the quasi-symmetry test to á and set that of the 
marginal homogeneity test under the quasi-symmetry 
hypothesis to á/2, according to Hochberg (1988).

2  Statistical independence

In order to prove the statistical independence of the two 
statistics discussed in the previous section, we will define 
the following parameter spaces of some of the statistics 
under study according to the log-linear model (Birch, 
1963). First, the total parameter space for θ = (è (12), è (1),  
è (2), è (0)) corresponding to an r × r cross classification 
table is
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these models to two sets of cross-classification table. However, he does not refer to the statistical
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ij0 under the quasi-symmetry hypothesis, give their complete sufficient statistics
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QS is ancillary for these nuisance parameters. Furthermore, it is
apparent that G∗

MH0
is a function of these statistics. As a result, in accordance with independence

theorems due to Basu (1955) and Hogg (1961), G2
QS and G

2
MH∗

0
which is a function of the complete

sufficient statistics discussed above are stochastically independent. (Q.E.D.)
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and follows asymptotically the χ2 distribution with r (r − 1) 
degrees of freedom (Andersen, 1980).
	 Next, let us resolve the likelihood ratio statistic for 
testing HMH0 into, 

and then
HMH0

0 : θ ∈ ωMH0 against H
MH∗

0
1 : θ ∈ ωQS − ωMH0 . (16)

It is apparent that under HQS
0 , ωMH0 is contained in ωS . In other words, H

MH0
0 is considered

as a special symmetry hypothesis under HQS
0 . It should be noted here that the likelihood ratio

statistic for testing a marginal homogeneity hypothesis

HMH0
0 : θ ∈ ωMH0 against HMH0

1 : θ ∈ Ω− ωMH0 , (17)

is written as

G2
MH0

= 2

r
i=1

fi•


ln fi• − ln

fi• + f•i
2


+ 2

r
=1

f•j


ln f•j − ln

fj• + f•j
2


, (18)

and follows asymptotically the χ2 distribution with r(r− 1) degrees of freedom (Andersen, 1980).
Next, let us resolve the likelihood ratio statistic for testing HMH0

0 into,

λMH0
=
L(ω̂MH0)

L(ω̂0)
=
L(ω̂QS)

L(ω̂0)

L(ω̂MH0)

L(ω̂QS)
= λQSλ

∗
MH0

, (19)

Then, we have
−2 lnλ∗MH0

= −2 lnλMH0
− (−2 lnλQS), (20)

or
G2

MH∗
0
= G2

MH0
−G2

QS . (21)

It is evident that G2
MH∗

0
is not the same as the likelihood ratio statistic G2

MH0
for testing the

marginal homogeneity symmetry hypothesis by Andersen (1980).
Moreover, note that the original marginal homogeneity hypothesis HMH

0 proposed by Cramér
(1946), which is written as

HMH
0 : µi• = µ•i, (22)

is not necessarily equivalent to the equality hypothesis of the row effect and the column effect

HERC
0 : θ

(1)
i = θ

(2)
j , (23)

(Andersen, 1980, pp.208-209).

It is well known that the LR statistic for testing HQS
0 against HQS

1 is

G2
QS = −2 ln λQS = 2

r
i=1

r
j=1

fij(ln fij − ln µ̂ij), (24)

where µ̂ij are the LR estimates of µij , which satisfy

fi• = µ̂i•, f•j = µ̂•j , and fij + fji = µ̂ij + µ̂ji. (25)

Under HQS
0 , G2

QS follows asymptotically the χ2 distribution with (r − 1)(r − 2)/2 degrees of
freedom.

Notice that the statistics, fi•, f•j , and fij + fji corresponding to the nuisance parameters

θ
(1)
i , θ

(2)
j , and θ

(12)
ij0 under the quasi-symmetry hypothesis, give their complete sufficient statistics

because of the nature of the exponential family of the joint distribution of the data under study.
Moreover, the statistic G2

QS is free of these nuisance parameters under the hypothesis of quasi-
symmetry, since the term µ̂ij are estimated as functions of the data, that is, fi•, f•j , and fij + fji.
In other words, the statistic G2

QS is ancillary for these nuisance parameters. Furthermore, it is
apparent that G∗

MH0
is a function of these statistics. As a result, in accordance with independence

theorems due to Basu (1955) and Hogg (1961), G2
QS and G

2
MH∗

0
which is a function of the complete

sufficient statistics discussed above are stochastically independent. (Q.E.D.)
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Then, we have

and then
HMH0

0 : θ ∈ ωMH0 against H
MH∗

0
1 : θ ∈ ωQS − ωMH0 . (16)

It is apparent that under HQS
0 , ωMH0 is contained in ωS . In other words, H

MH0
0 is considered

as a special symmetry hypothesis under HQS
0 . It should be noted here that the likelihood ratio

statistic for testing a marginal homogeneity hypothesis

HMH0
0 : θ ∈ ωMH0 against HMH0

1 : θ ∈ Ω− ωMH0 , (17)

is written as

G2
MH0

= 2
r

i=1

fi•


ln fi• − ln

fi• + f•i
2


+ 2

r
=1

f•j


ln f•j − ln

fj• + f•j
2


, (18)

and follows asymptotically the χ2 distribution with r(r− 1) degrees of freedom (Andersen, 1980).
Next, let us resolve the likelihood ratio statistic for testing HMH0

0 into,

λMH0
=
L(ω̂MH0)

L(ω̂0)
=
L(ω̂QS)

L(ω̂0)

L(ω̂MH0)

L(ω̂QS)
= λQSλ

∗
MH0

, (19)

Then, we have
−2 lnλ∗MH0

= −2 lnλMH0
− (−2 lnλQS), (20)

or
G2

MH∗
0
= G2

MH0
−G2

QS . (21)

It is evident that G2
MH∗

0
is not the same as the likelihood ratio statistic G2

MH0
for testing the

marginal homogeneity symmetry hypothesis by Andersen (1980).
Moreover, note that the original marginal homogeneity hypothesis HMH

0 proposed by Cramér
(1946), which is written as

HMH
0 : µi• = µ•i, (22)

is not necessarily equivalent to the equality hypothesis of the row effect and the column effect

HERC
0 : θ

(1)
i = θ

(2)
j , (23)

(Andersen, 1980, pp.208-209).

It is well known that the LR statistic for testing HQS
0 against HQS

1 is

G2
QS = −2 ln λQS = 2

r
i=1

r
j=1

fij(ln fij − ln µ̂ij), (24)

where µ̂ij are the LR estimates of µij , which satisfy

fi• = µ̂i•, f•j = µ̂•j , and fij + fji = µ̂ij + µ̂ji. (25)

Under HQS
0 , G2

QS follows asymptotically the χ2 distribution with (r − 1)(r − 2)/2 degrees of
freedom.

Notice that the statistics, fi•, f•j , and fij + fji corresponding to the nuisance parameters

θ
(1)
i , θ

(2)
j , and θ

(12)
ij0 under the quasi-symmetry hypothesis, give their complete sufficient statistics

because of the nature of the exponential family of the joint distribution of the data under study.
Moreover, the statistic G2

QS is free of these nuisance parameters under the hypothesis of quasi-
symmetry, since the term µ̂ij are estimated as functions of the data, that is, fi•, f•j , and fij + fji.
In other words, the statistic G2

QS is ancillary for these nuisance parameters. Furthermore, it is
apparent that G∗

MH0
is a function of these statistics. As a result, in accordance with independence

theorems due to Basu (1955) and Hogg (1961), G2
QS and G

2
MH∗

0
which is a function of the complete

sufficient statistics discussed above are stochastically independent. (Q.E.D.)
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and then
HMH0

0 : θ ∈ ωMH0 against H
MH∗

0
1 : θ ∈ ωQS − ωMH0 . (16)

It is apparent that under HQS
0 , ωMH0 is contained in ωS . In other words, H

MH0
0 is considered

as a special symmetry hypothesis under HQS
0 . It should be noted here that the likelihood ratio

statistic for testing a marginal homogeneity hypothesis

HMH0
0 : θ ∈ ωMH0 against HMH0

1 : θ ∈ Ω− ωMH0 , (17)

is written as

G2
MH0

= 2

r
i=1

fi•


ln fi• − ln

fi• + f•i
2


+ 2

r
=1

f•j


ln f•j − ln

fj• + f•j
2


, (18)

and follows asymptotically the χ2 distribution with r(r− 1) degrees of freedom (Andersen, 1980).
Next, let us resolve the likelihood ratio statistic for testing HMH0

0 into,

λMH0
=
L(ω̂MH0)

L(ω̂0)
=
L(ω̂QS)

L(ω̂0)

L(ω̂MH0)

L(ω̂QS)
= λQSλ

∗
MH0

, (19)

Then, we have
−2 lnλ∗MH0

= −2 lnλMH0
− (−2 lnλQS), (20)

or
G2

MH∗
0
= G2

MH0
−G2

QS . (21)

It is evident that G2
MH∗

0
is not the same as the likelihood ratio statistic G2

MH0
for testing the

marginal homogeneity symmetry hypothesis by Andersen (1980).
Moreover, note that the original marginal homogeneity hypothesis HMH

0 proposed by Cramér
(1946), which is written as

HMH
0 : µi• = µ•i, (22)

is not necessarily equivalent to the equality hypothesis of the row effect and the column effect

HERC
0 : θ

(1)
i = θ

(2)
j , (23)

(Andersen, 1980, pp.208-209).

It is well known that the LR statistic for testing HQS
0 against HQS

1 is

G2
QS = −2 ln λQS = 2

r
i=1

r
j=1

fij(ln fij − ln µ̂ij), (24)

where µ̂ij are the LR estimates of µij , which satisfy

fi• = µ̂i•, f•j = µ̂•j , and fij + fji = µ̂ij + µ̂ji. (25)

Under HQS
0 , G2

QS follows asymptotically the χ2 distribution with (r − 1)(r − 2)/2 degrees of
freedom.

Notice that the statistics, fi•, f•j , and fij + fji corresponding to the nuisance parameters

θ
(1)
i , θ

(2)
j , and θ

(12)
ij0 under the quasi-symmetry hypothesis, give their complete sufficient statistics

because of the nature of the exponential family of the joint distribution of the data under study.
Moreover, the statistic G2

QS is free of these nuisance parameters under the hypothesis of quasi-
symmetry, since the term µ̂ij are estimated as functions of the data, that is, fi•, f•j , and fij + fji.
In other words, the statistic G2

QS is ancillary for these nuisance parameters. Furthermore, it is
apparent that G∗

MH0
is a function of these statistics. As a result, in accordance with independence

theorems due to Basu (1955) and Hogg (1961), G2
QS and G

2
MH∗

0
which is a function of the complete

sufficient statistics discussed above are stochastically independent. (Q.E.D.)
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	 It is evident that G 2    is not the same as the likelihood 
ratio statistic G 2   for testing the marginal homogeneity 
symmetry hypothesis by Andersen (1980).
	 Moreover, note that the original marginal homogeneity 
hypothesis HMH proposed by Cramér (1946), which is 
written as

	

and then
HMH0

0 : θ ∈ ωMH0 against H
MH∗

0
1 : θ ∈ ωQS − ωMH0 . (16)

It is apparent that under HQS
0 , ωMH0 is contained in ωS . In other words, H

MH0
0 is considered

as a special symmetry hypothesis under HQS
0 . It should be noted here that the likelihood ratio

statistic for testing a marginal homogeneity hypothesis

HMH0
0 : θ ∈ ωMH0 against HMH0

1 : θ ∈ Ω− ωMH0 , (17)

is written as

G2
MH0

= 2

r
i=1

fi•


ln fi• − ln

fi• + f•i
2


+ 2

r
=1

f•j


ln f•j − ln

fj• + f•j
2


, (18)

and follows asymptotically the χ2 distribution with r(r− 1) degrees of freedom (Andersen, 1980).
Next, let us resolve the likelihood ratio statistic for testing HMH0

0 into,

λMH0
=
L(ω̂MH0)

L(ω̂0)
=
L(ω̂QS)

L(ω̂0)

L(ω̂MH0)

L(ω̂QS)
= λQSλ

∗
MH0

, (19)

Then, we have
−2 lnλ∗MH0

= −2 lnλMH0
− (−2 lnλQS), (20)

or
G2

MH∗
0
= G2

MH0
−G2

QS . (21)

It is evident that G2
MH∗

0
is not the same as the likelihood ratio statistic G2

MH0
for testing the

marginal homogeneity symmetry hypothesis by Andersen (1980).
Moreover, note that the original marginal homogeneity hypothesis HMH

0 proposed by Cramér
(1946), which is written as

HMH
0 : µi• = µ•i, (22)

is not necessarily equivalent to the equality hypothesis of the row effect and the column effect

HERC
0 : θ

(1)
i = θ

(2)
j , (23)

(Andersen, 1980, pp.208-209).

It is well known that the LR statistic for testing HQS
0 against HQS

1 is

G2
QS = −2 ln λQS = 2

r
i=1

r
j=1

fij(ln fij − ln µ̂ij), (24)

where µ̂ij are the LR estimates of µij , which satisfy

fi• = µ̂i•, f•j = µ̂•j , and fij + fji = µ̂ij + µ̂ji. (25)

Under HQS
0 , G2

QS follows asymptotically the χ2 distribution with (r − 1)(r − 2)/2 degrees of
freedom.

Notice that the statistics, fi•, f•j , and fij + fji corresponding to the nuisance parameters

θ
(1)
i , θ

(2)
j , and θ

(12)
ij0 under the quasi-symmetry hypothesis, give their complete sufficient statistics

because of the nature of the exponential family of the joint distribution of the data under study.
Moreover, the statistic G2

QS is free of these nuisance parameters under the hypothesis of quasi-
symmetry, since the term µ̂ij are estimated as functions of the data, that is, fi•, f•j , and fij + fji.
In other words, the statistic G2

QS is ancillary for these nuisance parameters. Furthermore, it is
apparent that G∗

MH0
is a function of these statistics. As a result, in accordance with independence

theorems due to Basu (1955) and Hogg (1961), G2
QS and G

2
MH∗

0
which is a function of the complete

sufficient statistics discussed above are stochastically independent. (Q.E.D.)

4

� (22)

is not necessarily equivalent to the equality hypothesis of 
the row effect and the column effect

	

and then
HMH0

0 : θ ∈ ωMH0 against H
MH∗

0
1 : θ ∈ ωQS − ωMH0 . (16)

It is apparent that under HQS
0 , ωMH0 is contained in ωS . In other words, H

MH0
0 is considered

as a special symmetry hypothesis under HQS
0 . It should be noted here that the likelihood ratio

statistic for testing a marginal homogeneity hypothesis

HMH0
0 : θ ∈ ωMH0 against HMH0

1 : θ ∈ Ω− ωMH0 , (17)

is written as

G2
MH0

= 2

r
i=1

fi•


ln fi• − ln

fi• + f•i
2


+ 2

r
=1

f•j


ln f•j − ln

fj• + f•j
2


, (18)

and follows asymptotically the χ2 distribution with r(r− 1) degrees of freedom (Andersen, 1980).
Next, let us resolve the likelihood ratio statistic for testing HMH0

0 into,

λMH0
=
L(ω̂MH0)

L(ω̂0)
=
L(ω̂QS)

L(ω̂0)

L(ω̂MH0)

L(ω̂QS)
= λQSλ

∗
MH0

, (19)

Then, we have
−2 lnλ∗MH0

= −2 lnλMH0
− (−2 lnλQS), (20)

or
G2

MH∗
0
= G2

MH0
−G2

QS . (21)

It is evident that G2
MH∗

0
is not the same as the likelihood ratio statistic G2

MH0
for testing the

marginal homogeneity symmetry hypothesis by Andersen (1980).
Moreover, note that the original marginal homogeneity hypothesis HMH

0 proposed by Cramér
(1946), which is written as

HMH
0 : µi• = µ•i, (22)

is not necessarily equivalent to the equality hypothesis of the row effect and the column effect

HERC
0 : θ

(1)
i = θ

(2)
j , (23)

(Andersen, 1980, pp.208-209).

It is well known that the LR statistic for testing HQS
0 against HQS

1 is

G2
QS = −2 ln λQS = 2

r
i=1

r
j=1

fij(ln fij − ln µ̂ij), (24)

where µ̂ij are the LR estimates of µij , which satisfy

fi• = µ̂i•, f•j = µ̂•j , and fij + fji = µ̂ij + µ̂ji. (25)

Under HQS
0 , G2

QS follows asymptotically the χ2 distribution with (r − 1)(r − 2)/2 degrees of
freedom.

Notice that the statistics, fi•, f•j , and fij + fji corresponding to the nuisance parameters

θ
(1)
i , θ

(2)
j , and θ

(12)
ij0 under the quasi-symmetry hypothesis, give their complete sufficient statistics

because of the nature of the exponential family of the joint distribution of the data under study.
Moreover, the statistic G2

QS is free of these nuisance parameters under the hypothesis of quasi-
symmetry, since the term µ̂ij are estimated as functions of the data, that is, fi•, f•j , and fij + fji.
In other words, the statistic G2

QS is ancillary for these nuisance parameters. Furthermore, it is
apparent that G∗

MH0
is a function of these statistics. As a result, in accordance with independence

theorems due to Basu (1955) and Hogg (1961), G2
QS and G

2
MH∗

0
which is a function of the complete

sufficient statistics discussed above are stochastically independent. (Q.E.D.)
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(Andersen, 1980, pp. 208–209).
	 It is well known that the LR statistic for testing H QS 
against H QS is

	

and then
HMH0

0 : θ ∈ ωMH0 against H
MH∗

0
1 : θ ∈ ωQS − ωMH0 . (16)

It is apparent that under HQS
0 , ωMH0 is contained in ωS . In other words, H

MH0
0 is considered

as a special symmetry hypothesis under HQS
0 . It should be noted here that the likelihood ratio

statistic for testing a marginal homogeneity hypothesis

HMH0
0 : θ ∈ ωMH0 against HMH0

1 : θ ∈ Ω− ωMH0 , (17)

is written as

G2
MH0

= 2

r
i=1

fi•


ln fi• − ln

fi• + f•i
2


+ 2

r
=1

f•j


ln f•j − ln

fj• + f•j
2


, (18)

and follows asymptotically the χ2 distribution with r(r− 1) degrees of freedom (Andersen, 1980).
Next, let us resolve the likelihood ratio statistic for testing HMH0

0 into,

λMH0
=
L(ω̂MH0)

L(ω̂0)
=
L(ω̂QS)

L(ω̂0)

L(ω̂MH0)

L(ω̂QS)
= λQSλ

∗
MH0

, (19)

Then, we have
−2 lnλ∗MH0

= −2 lnλMH0
− (−2 lnλQS), (20)

or
G2

MH∗
0
= G2

MH0
−G2

QS . (21)

It is evident that G2
MH∗

0
is not the same as the likelihood ratio statistic G2

MH0
for testing the

marginal homogeneity symmetry hypothesis by Andersen (1980).
Moreover, note that the original marginal homogeneity hypothesis HMH

0 proposed by Cramér
(1946), which is written as

HMH
0 : µi• = µ•i, (22)

is not necessarily equivalent to the equality hypothesis of the row effect and the column effect

HERC
0 : θ

(1)
i = θ

(2)
j , (23)

(Andersen, 1980, pp.208-209).

It is well known that the LR statistic for testing HQS
0 against HQS

1 is

G2
QS = −2 ln λQS = 2

r
i=1

r
j=1

fij(ln fij − ln µ̂ij), (24)

where µ̂ij are the LR estimates of µij , which satisfy

fi• = µ̂i•, f•j = µ̂•j , and fij + fji = µ̂ij + µ̂ji. (25)

Under HQS
0 , G2

QS follows asymptotically the χ2 distribution with (r − 1)(r − 2)/2 degrees of
freedom.

Notice that the statistics, fi•, f•j , and fij + fji corresponding to the nuisance parameters

θ
(1)
i , θ

(2)
j , and θ

(12)
ij0 under the quasi-symmetry hypothesis, give their complete sufficient statistics

because of the nature of the exponential family of the joint distribution of the data under study.
Moreover, the statistic G2

QS is free of these nuisance parameters under the hypothesis of quasi-
symmetry, since the term µ̂ij are estimated as functions of the data, that is, fi•, f•j , and fij + fji.
In other words, the statistic G2

QS is ancillary for these nuisance parameters. Furthermore, it is
apparent that G∗

MH0
is a function of these statistics. As a result, in accordance with independence

theorems due to Basu (1955) and Hogg (1961), G2
QS and G

2
MH∗

0
which is a function of the complete

sufficient statistics discussed above are stochastically independent. (Q.E.D.)
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where μ̂i j are the LR estimates of μi j , which satisfy

	

and then
HMH0

0 : θ ∈ ωMH0 against H
MH∗

0
1 : θ ∈ ωQS − ωMH0 . (16)

It is apparent that under HQS
0 , ωMH0 is contained in ωS . In other words, H

MH0
0 is considered

as a special symmetry hypothesis under HQS
0 . It should be noted here that the likelihood ratio

statistic for testing a marginal homogeneity hypothesis

HMH0
0 : θ ∈ ωMH0 against HMH0

1 : θ ∈ Ω− ωMH0 , (17)

is written as

G2
MH0

= 2
r

i=1

fi•


ln fi• − ln

fi• + f•i
2


+ 2

r
=1

f•j


ln f•j − ln

fj• + f•j
2


, (18)

and follows asymptotically the χ2 distribution with r(r− 1) degrees of freedom (Andersen, 1980).
Next, let us resolve the likelihood ratio statistic for testing HMH0

0 into,

λMH0
=
L(ω̂MH0)

L(ω̂0)
=
L(ω̂QS)

L(ω̂0)

L(ω̂MH0)

L(ω̂QS)
= λQSλ

∗
MH0

, (19)

Then, we have
−2 lnλ∗MH0

= −2 lnλMH0
− (−2 lnλQS), (20)

or
G2

MH∗
0
= G2

MH0
−G2

QS . (21)

It is evident that G2
MH∗

0
is not the same as the likelihood ratio statistic G2

MH0
for testing the

marginal homogeneity symmetry hypothesis by Andersen (1980).
Moreover, note that the original marginal homogeneity hypothesis HMH

0 proposed by Cramér
(1946), which is written as

HMH
0 : µi• = µ•i, (22)

is not necessarily equivalent to the equality hypothesis of the row effect and the column effect

HERC
0 : θ

(1)
i = θ

(2)
j , (23)

(Andersen, 1980, pp.208-209).

It is well known that the LR statistic for testing HQS
0 against HQS

1 is

G2
QS = −2 ln λQS = 2

r
i=1

r
j=1

fij(ln fij − ln µ̂ij), (24)

where µ̂ij are the LR estimates of µij , which satisfy

fi• = µ̂i•, f•j = µ̂•j , and fij + fji = µ̂ij + µ̂ji. (25)

Under HQS
0 , G2

QS follows asymptotically the χ2 distribution with (r − 1)(r − 2)/2 degrees of
freedom.

Notice that the statistics, fi•, f•j , and fij + fji corresponding to the nuisance parameters

θ
(1)
i , θ

(2)
j , and θ

(12)
ij0 under the quasi-symmetry hypothesis, give their complete sufficient statistics

because of the nature of the exponential family of the joint distribution of the data under study.
Moreover, the statistic G2

QS is free of these nuisance parameters under the hypothesis of quasi-
symmetry, since the term µ̂ij are estimated as functions of the data, that is, fi•, f•j , and fij + fji.
In other words, the statistic G2

QS is ancillary for these nuisance parameters. Furthermore, it is
apparent that G∗

MH0
is a function of these statistics. As a result, in accordance with independence

theorems due to Basu (1955) and Hogg (1961), G2
QS and G

2
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0
which is a function of the complete

sufficient statistics discussed above are stochastically independent. (Q.E.D.)

4

� (25)

	 Under H QS, G 2  follows asymptotically the χ2 distri-
bution with (r − 1)(r − 2)/2 degrees of freedom.
	 Notice that the statistics, f i•, f• j , and f i j + f j i corre-
sponding to the nuisance parameters è (1), è (2), and è (12) 
under the quasi-symmetry hypothesis, give their complete 
sufficient statistics because of the nature of the exponential 
family of the joint distribution of the data under study.
	 Moreover, the statistic G 2  is free of these nuisance 
parameters under the hypothesis of quasi-symmetry, since 
the term μ̂i j are estimated as functions of the data, that is, 
f i•, f• j , and f i j + f j i. In other words, the statistic G 2   is 
ancillary for these nuisance parameters. Furthermore, it is 
apparent that G *   is a function of these statistics. As a 
result, in accordance with independence theorems due to 
Basu (1955) and Hogg (1961), G 2   and G 2   which is a 
function of the complete sufficient statistics discussed 
above are stochastically independent.    (Q.E.D.)

3  A possible application of the theorem to 
asymmetric relational data

The extant asymmetric MDS models referred to in the 
introductory section are diverse in character. However, if 
we want to classify them into two, then one such classifi-
cation can be made by using the concept of a quasi-
symmetry-like family of asymmetric MDS (Chino & Saburi, 
2009). Here, by the quasi-symmetry-like family of the 

asymmetric MDS models we mean members of those 
models composed of parameters similar to the row effect, 
the column effect, and the interaction effect of the log-linear 
model of contingency table.
	 These are the distance-association model (de Rooij & 
Heiser, 2003, 2005), the distance-density model 
(Krumhansl, 1978), the Okada-Imaizumi model (Okada & 
Imaizumi, 1987, 1997), the Saito model (Saito, 1991), the 
Saito-Takedamodel (Saito & Takeda, 1990), the slide-vector 
model (Kruskal, 1973; Zielman & Heiser, 1993), the 
Weeks-Bentler model (Weeks & Bentler, 1982), and the 
wind model (Gower, 1977). De Rooij and Heiser (2003) 
have originally referred to them as models related to their 
distance-association model.
	 By contrast, there are some models which do not belong 
to the above family. They are Complex Coding (Escofier & 
Grorud, 1980), DEDICOM (Harshman, 1978; Harshman et 
al., 1982), GIPSCAL (Chino, 1978, 1990), generalized 
GIPSCAL (Kiers & Takane, 1994), GIPSCAL by a 
projected gradient approach (Trendafilov, 2000), the Gower 
diagram (Constantine & Gower, 1978; Gower, 1977), HFM 
(Chino & Shiraiwa, 1993), the Rander’s metric model (Sato, 
1989). We shall call them the non-quasi-symmetry-like 
family of the asymmetric MDS models.
	 Asymmetric relational data of Type A discussed in the 
introductory section can be tested sequentially. That is, if 
H QS is tested against H QS, and is rejected, it might be 
necessary and appropriate to apply some of the non-quasi-
symmetry-like family of asymmetric MDS to the 
asymmetric relational data.
	 If H QS is accepted, then we may proceed to the marginal 
homogeneity test under the quasi-symmetry hypothesis, that 
is, to test HMH0 against HMH0*. If this test is accepted, we 
should apply some of the extant symmetric MDS models 
like MAXSCAL. However, even if it is rejected, this does 
not exclude the possibility that the data is symmetric. In 
this sense, this test is restrictive.
	 We have been conjectured that the likelihood ratio test 
statistics on the quasi-symmetry hypothesis proposed by 
Caussinus (1965) and that of a version of the symmetry 
hypothesis suggested first by him, that is,
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S∗ = G2

S −G2
QS , (26)

are mutually statistically independent (Chino & Saburi, 2009). However, these two statistics are
not statistically independent at least exactly, because GMH∗

0
is not the function of the complete

sufficient statistics, fi•, f•j , and fij + fji. Tomizawa (2009, personal communication, December
23, 2009) conjectures that these are statistically independent asymptotically.
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