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1 Motivation

In any branch of science, we first start with the careful observations of the phenomenon under study, and establish the so-
called empirical law which governs the phenomenon. For example, Keplerʼs law was established by Kepler using a body of 
astronomical observations of planetary motions which had been gathered by Tycho Brahe. According to this law, especially the 
first law, the earth goes round the sun on the elliptical orbit.

However, the Keplerʼs law will never teach us why and how the earth moves around the sun. Furthermore, we may ask 
whether the elliptical orbit is the only possible orbit or not. To answer these questions, we need two theoretical laws. One is 
Newtonʼs second law, and the other Newtonʼs law of gravitation.

On the one hand, Newtonʼs second law, F = ma, is written as a second order differential equation, if we denote x(t) as the 
position vector of the particle at time t:
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where m denotes the mass of the particle.
On the other hand, Newtonʼs law of gravitation states that a body of mass m1 exerts a force F on a body of mass m2 such 

that F = , where r denotes the distance between their centers of gravity and g a constant. Thus, if m1 lies at the origin of 
R3 and m2 at x ∈ R3, the force on m2 can be written as

By solving the above differential equation, we can obtain possible three types of orbits, i.e., a hyperbola, parabola, and 
ellipse according to whether the total energy of the system E > 0 , E = 0 , or E < 0  (e.g., Hirsch & Smale, 1974, p.26). As is 
apparent from this example, an important role of any theoretical law is that it enables us to predict the phenomena which have 
never been observed empirically.

The above problem can easily be extended to the so-called “n-body problem”. The Newtonian n-body problem, which is 
the prototype of other n-body problems, can generally be written as,

　　

where V (x) is a C2 function, and

However, the n-body problem seems to be not easy to solve, and no clear picture has emerged on these equations (Hirsch & 
Smale, 1974).

In the next section we shall briefly discuss n-body problems mainly in the social and behavioral sciences, and consider some 
basic problems associated with the n-body problems in these areas of research.

2 n-body problems mainly in the social and behavioral sciences

Let us now ask some questions about n-body problems of phenomena in the social and behavioral sciences as well as the 
biological sciences. The following list might be considered typical examples of the phenomena observed in these sciences: 
relationships among members of any informal groups such as classmates at school or college and changes in these relationships 
over time; relationship called pecking order among a group of hens and cocks in a chicken house and changes in these 
relationships over time; amounts of trade among nations and their changes over time; strength of connections among neurons 
and changes in it over time. In all of these examples, members of the group can be thought of as constituents of the n bodies in 
the n-body problem.

What are the state spaces in which these objects are embedded? Are they embedded rationally in the Euclidean space? Have 
we already gathered ample observations necessary to construct some empirical laws? Can we construct some theoretical laws 
based on a few principles or statements about the phenomenon under study?

The first question is concerned with the basic problem in asymmetric multidimensional scaling (abbreviated hereafter, as 
asymmetric MDS) in psychometrics (e.g., Chino, 2012), and the answer to the second question is negative in the strict sense, 
because the distances from member j to member k as well as the one from member k to member j defined in the Euclidean 
space are the same and this relation contradicts the asymmetric similarities between members usually observed in the 
phenomena in the social and behavioral sciences. To cope with this problem, various augmented distance models have been 
proposed which assume the Euclidean space or Minkowskiʼs l-metric space and augment the distance by adding some factors 
on asymmetry (e.g., Okada & Imaizumi, 1984, 1987).

In contrast, Chino and Shiraiwa (1993) have shown that objects can be embedded in a finite dimensional Hilbert space or an 
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indefinite metric space, given an asymmetric similarity matrix S whose (j, k) element is the observed similarity from object j to 
object k. Let us here construct a Hermitian matrix H as follows:

where i2 = －1. Chino and Shiraiwa have proven that a necessary and sufficient condition for a set of distances djk = dkj to be 
the true interpoint distances in a (complex) Hilbert space is the positive semi-definiteness of H. This is an extension of the 
Schoenberg-Young-Householder theorem (Chino et al., 2012) on MDS to the case of the complex space.

Chino and Shiraiwa have also shown that objects are embedded in an appropriate space by solving the eigenvalue problem 
of H. In fact we have

where

and Λ is a diagonal matrix of order n which is the number of non-zero eigenvalues of H, i.e., Λ = diag(λ1;λ2;…; λn). The 
matrix X is the special real N×2n coordinate matrix of objects, i.e., X = (Ur ,Uc), where U1 = Ur +iUc and U1 are composed 
of the complex eigenvectors of H corresponding to its non-zero eigenvalues. It should be noticed that all the eigenvalues of H 
is real.

It is easy to show that Eq. ( 6 ) can be rewritten as

This equation shows the relation between observed similarities among objects and the coordinates of objects in an 
appropriate complex space. For further detail, see Chino and Shiraiwa (1993) and Chino (2012).

If S are measured at a ratio scale level, we can embed objects in an appropriate complex space. Chino and Shiraiwa (1993) 
call the above method for asymmetric MDS Hermitian Form Model (abbreviated as HFM). In application, however, it is often 
the case that S are not measured at a ratio scale level. For example, Table 1  shows a sociometric data, in which each element 
designates the affinity of a member toward another member in a class of a senior-high school.

It is measured at an interval level. In such a case we must estimate the coordinates of objects by a suitable method. Saburi 
and Chino (2008) show one such method. In their method S may be measured at either the ordinal, interval, or ratio level.

As regards the third question, we have not had ample 
observations regarding many of the problems listed above, 
especially in cases in the social and behavioral sciences. In 
such a situation, a set of longitudinal asymmetric relational 
data matrices (to be precise, longitudinal attraction data 
matrices) among members of a dormitory in The University 
of Michigan is a rare example, which was gathered by 
Newcomb (1961). In general, it is laborious to gather such a 
longitudinal asymmetric data matrices in phenomena in the 
social and behavioral sciences. Thus, it will be appropriate 
and natural at present to simulate such phenomena using 
some mathematical models.

Tables and Figures

Table 1: Sociometric data for 10 students in a high school

rater \ ratee 1 2 3 4 5 6 7 8 9 10

1 4 3 4 3 5 5 6 4 7 7

2 2 3 4 6 7 6 5 5 4 5

3 4 4 3 5 5 4 4 3 4 5

4 4 7 6 3 7 7 4 6 4 5

5 1 7 6 7 4 7 6 6 6 5

6 4 5 4 6 5 7 4 4 4 4

7 4 5 4 4 3 3 6 6 4 6

8 2 4 4 4 5 4 5 2 4 4

9 6 5 5 5 5 6 5 5 4 6

10 4 4 4 3 4 4 4 4 4 4

(reproduced from Chino (1978))

15

Table 1 : Sociometric data for 10 students in a high school
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One such candidate may be a difference equation model. Considering the Chino and Shiraiwaʼs theorem, we assume that the 
state space in which objects or members are embedded is a Hilbert space or an indefinite metric space. Furthermore, we assume 
that members obey the following basic principles of interpersonal behaviors:

1. The asymmetric sentiment relationships among members make their affinities change.
2. If a member has a positive sentiment toward another member, then he or she approaches to the target member.
3. If a member has a negative sentiment toward another member, then he or she parts from the target member.

There exist two minor principles in this difference equation model, as listed below:

1.  The magnitude of change in coordinate of members is proportional to the sine of the difference in angles (arguments) 
    between two members in a complex plane.
2. The magnitude of change in coordinate of members is proportional to the norm of the coordinate in a complex plane.

The first one is concerned with our asymmetric MDS, HFM, and the magnitudes of change in coordinates of members take 
the maximum value when the angle is  ±π=2. The second one is associated with the self-similarity of each member, because 
the norm represents the magnitude of similarity to oneself. Recently, we have proposed a more general model which drops 
these two assumptions. We shall later discuss it in the discussion section.

One of the models which fulfill these requirements is the finite-dimensional complex difference equation model proposed by 
Chino (2002)：

Here,

Moreover,

In the above model, N denotes the number of members in informal groups, and p and q represent appropriate constants. 
Moreover, rj;n and θj;n denote, respectively, the norm and the argument of member jʼs position vector, zj;n, at time n. Of course, 
the vector is a p-dimensional vector in a finite-dimensional complex space. The space may be either a Hilbert space or an 
indefinite metric space. In this paper we assume the former space.

On the one hand, it is assumed in Eq. ( 9 ) that the positive direction of the configuration of members in each of the complex 
planes associated with the complex dimensions is counterclockwise (Chino, 1978, 1990). On the other hand, it is assumed that 
the positive direction is clockwise in HFM (Chino & Shiraiwa, 1993). In this paper we choose the clockwise direction in each 
of the complex plane as the positive direction. As a result, Eq. ( 9 ) must be rewritten as,

Here, it is necessary to change the signs of each of the elements in Eq. (10) by exchanging j and k. Moreover, we simplified 
the factors in the sine function of Eq. (12) a bit, and added new parameters b and c, as follows:
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In this supplement, we also discuss a more general model, in which a small complex constant
(vector) is added to Eq. (13), i.e.,

In the appendix, we show some restricted simulation results of the above general difference equation model described by Eq. 
(15). It will be seen that the above constant enriches possible scenarios for the formation and dissolution of affinities among 
members of (informal) groups.

3 Restricted simulation results of a general complex difference equation model

In this section and the appendix, several simulations are conducted to examine our complex difference equation models 
under different conditions. In all of the simulations, we first show the initial configuration of objects (members) which we 
assumed. In this paper, we assume the unidimensional Hilbert space to be the state space, i.e., the usual complex plane, 
although our model assumes a finite-dimensional Hilbert space or an indefinite metric space in general.

In looking at configurations of objects in these simulations, some caution must be exercised. In psychometrics it is usual to 
depict the positions of objects as dots. However, in this section we draw them as position vectors in order to show the change 
in these positions over time (iteration) as clearly as possible. Another reason is that in HFM similarity between two objects is 
represented as an inner product (to be precise, Hermitian inner product), and therefore the origin is crucial. It should be noticed 
that the positive direction of the configuration is clockwise since we utilize HFM in this simulation.

Simulation 1 : dyad relation, N=2, n=200, p=q=1, b=c=1/50

In Sim.1, we examined change in a dyad relation during 200 iterations, where the number of members equals 2 , p=q= 1 , 
and b=c=1 /50 in Eq. (13). Fig. 1  illustrates the change in configurations of two members in the complex plane. It is apparent 
that the skewness of affinity between the two gradually decreases, as both of them rotate in the clockwise direction, as time 
proceeds. Here, it should be noticed from Fig.2a, 2b that self-similarities of both members, i.e., norms of their position vectors, 
increase monotonically after earlier iterations. In contrast, the skewness of affinity between them decreases monotonically 
immediately after the first iteration, as is apparent from Fig.2c.

Figure 1: Locomotion of a dyad relation in a unidimensional Hilbelt space
Figure 1 : Locomotion of a dyad relation in a unidimensional Hilbelt space
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Finally, Fig.3 depicts orbits of the dyad during 200 iterations in the same complex plane. In this figure, a black dot represents 
the origin. Moreover, A1 and B1 in this figure denote the initial points of the two members, respectively. It is apparent from this 
figure that both of the two members part from the origin as iteration proceeds, moving on the same line while preserving the 
distance between them.

As can be seen from Sim.1, locomotion of a dyad in the complex plane is simple and linear, and the skewness of affinity 
between the dyad diminishes asymptotically. However, in the case of triad relation, their locomotions become nonlinear and 
show curious scenarios. However, in many cases the skewness of affinity among members diminishes asymptotically after 
fairly long iterations. We shall show such scenarios in the several subsections that follow.

a. Self-sims. of member A (b=c=1/50).
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Figure 2: Changes in self-similarities of the dyad (2a, b) and change in the angle (2c)

Figure 2 : Changes in self-similarities of the dyad (2a, b) and change in the angle (2c)
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Figure 3: Orbits of the dyad in simulation 1
Figure 3 : Orbits of the dyad in simulation 1
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There are a lot of open problems to be discussed. Some of them are ( 1 ) the problem of estimating model parameters, given 
empirical data, ( 2 ) identification of the bifurcation parameters by for example utilizing SEM, ( 3 ) stability analysis of our 
model, ( 4 ) the problem of defining energy in our model.

In the appendix, we have shown major results on several simulation studies other than Sim.1. These simulations suggest that 
the difference equation models proposed in this paper can predict a body of curious possible scenarios for the formation and 
dissolution of affinities among members of informal groups.

However, there exists a fundamental defect in our models, the reason being that our two minor principles in these models 
include the complex conjugate, z̄jn, of the coordinate vectors, zjn, of each member in a complex space. It is well known in 
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Appendix

Simulation 2 : triad relation, N=3, n=7000, p=q=1, b=c=1/50

In Sim.2 we examined change in a triad relation during 7000 iterations, where the number of members equals 3 , p=q=1 , 
b=c= 1 /50 in Eq.13. Fig.4 suggests that as time proceeds the triad relation which exhibits asymmetric sentiment structures 
among members at the initial coordinates converges to an almost symmetric relation after the lengthy iterations.

Such a tendency can be ascertained by the fact that angles among the triad seem to converge to zero or 2π in Fig.6. 
This tendency can also be confirmed by the fact that the three orbits of the triad seem to converge to a line in Fig.7, as time 
proceeds. 　

Figure 4: Locomotion of a triad relation in a unidimensional Hilbelt spaceFigure 5: Changes in self-similarities of the triad

Figure 6: Changes in angles among the triad
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Simulation 3 : tripartite deadlock, N=3, n=600, p=q=1, b=c=1/50

In Sim.3 we examined change in the so-called tripartite deadlock relation during 600 iterations. It is apparent from Fig.8 that 
the deadlock relation remains unchanged with regard to angles among three members even if time proceeds. This feature can be 
directly confirmed from Fig.10. It is also apparent from Fig.9 that the self-similarities of members, i.e., the lengths of members 
from the origin increase gradually as time passes, such features being ascertained by drawing Fig.9 more clearly. Fig.11 depicts 
orbits of the tripartite in Sim.3, which illustrates these features simultaneously in a figure.

Figure 8: Locomotion of a tripartite in a unidimensional Hilbelt spaceFigure 9: Changes in self-similarities of the tripartite

Figure 10: Changes in angles among the tripartite
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Simulation 4 : linear triad relation, N=3, n=200, p=q=1, b=c=1/50

In Sim.4 we examined change in a linear triad relation over time, where the initial coordinates of the three members are 
located in line, as can be seen in Fig.12a. It is apparent from Fig.12 that asymmetric relations among members gradually 
disappear as time proceeds, which can be directly verified by looking at Fig.14. In Fig.14a and 14b, angles from A to B as well 
as B to C converge to zero, while in Fig.14c, the angle from C to A converges to 2π, as time passes. It is apparent from Fig.15 
that orbits of the triad in Sim.4 may form in line, as time passes. 　

Figure 12: Locomotion of a triad in a unidimensional Hilbelt spaceFigure 13: Changes in self-similarities of the triad

Figure 14: Changes in angles among the triad
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Figure 16: Locomotion of a dyad in a unidimensional Hilbelt spaceFigure 17: Changes in self-similarities of the dyad (17a, b) and change in the angle (17c)
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Figure 18: Orbits of the dyad in simulation 5

Figure 16: Locomotion of a dyad in a unidimensional Hilbelt 
space

Figure 17: Changes in self-similarities of the dyad (17a, b) 
and change in the angle (17c)

Figure 18: Orbits of the dyad in simulation 5

Simulation 5 : dyadic relation, N=2, n=200, p=1, q=2, b=c=1/50

In Sim.5, we examined change in a dyadic relation during 200 iterations. Results of the simulation are illustrated in Figs.16 
through 18. Initial coordinates of the dyad are the same as those in Sim.1. In this case, however, the system of difference 
equations is quadratic, while it is linear in Sim.1. It is apparent from these results that the nonlinearity of the system makes 
much difference to the scenarios of change in the dyadic relation between the two members.

First, the configuration of members at iteration 100 (i.e., Fig.1d) in Sim.1 shows that members A and B become a symmetric 
relation in which they like one another, while in Sim.5 they become the other symmetric relation in which they dislike one 
another as can be seen in Fig.16d. Second, the self-similarities of the dyad no longer increase in Sim.5 as shown in Figs.17a 
to 17b, while they increase monotonically or increase after some point in time at an initial stage. It is interesting to note that 
the angle between the two members increase monotonically at the initial stage but that it converges to a value at which two 
members stand in line and cease to move. Such motions can be inferred by looking closely at Fig.18.
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Simulation 6 : tripartite deadlock, N=3, n=600, p=1, q=2, b=c=1/50

In Sim.6, we examined change in a tripartite deadlock relation, whose relation is the same as that in Sim.3. However, the 
order of Eq.(13) in Sim.3 is linear (i.e., q = 1 ), whereas it is quadratic in Sim.6. In contrast with the results of Sim.3, this 
tripartite deadlock relation at an initial point in time, dissolves as time proceeds, as can be seen in Fig.19. On the one hand, 
self-similarities of members no longer increase as time proceeds in marked contrast to those shown in Fig.9 of Sim.3. On the 
other hand, angles from A to B as well as B to C converge to π, while the angle from C to A converges to 0. Such features can 
be seen in the orbits of these members illustrated in Fig.22. It will be interesting to note that in this figure locations of the three 
members seem to approach to a line.

It should be noticed that the initial configuration in this simulation is the same as that in Sim.3. Nevertheless, the 
configuration at iteration 100 is completely different from that, as shown in Fig.19. Moreover, self-similarities of the triad 
no longer increase monotonically, and after earlier iterations they begin to decrease and then approach to some constants 
asymptotically, as depicted in Fig.20. Furthermore, orbits of the triad are no longer linear, as shown in Fig.22.

Figure 19: Locomotion of a tripartite in a unidimensional Hilbelt spaceFigure 20: Changes in self-similarities of the tripartite

Figure 21: Changes in angles among the tripartite
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Figure 22: Orbits of the tripartite in simulation 6

Figure 19: Locomotion of a tripartite in a unidimensional 
Hilbelt space

Figure 20: Changes in self-similarities of the tripartite

Figure 21: Changes in angles among the tripartite Figure 22: Orbits of the tripartite in simulation 6
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Simulation 7 : dyad relation, const=0.01i, N=2, n=1000, p=q=1, b=c=1/50

In Sim.7, we examined change in a dyadic relation, whose initial configuration is the same as that shown in Sim.1 and 5 , 
and whose system is linear. However, this system is completely different from those in these simulations in that it includes a 
complex constant term, 0.01i, as described in Eq. (15). In this case, a striking feature emerges in change in the angle between 
the two members at around 100th iteration, as can be seen in Fig.24c. That is, the angle begins to oscillate for a whole, and then 
it behaves like a damped oscillator (see, for exmaple, Thompson & Stewart, 1986). Such oscillations can also be observed in 
Fig.25, which shows the orbits of the dyad in Sim.7.

Figure 23: Locomotion of a dyad relation in a unidimensional Hilbelt spaceFigure 24: Changes in self-similarities of the dyad (24a, b) and change in the angle (24c)
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Figure 25: Orbits of the dyad in simulation 7

Figure 23: Locomotion of a dyad relation in a unidimensional 
Hilbelt space

Figure 24: Changes in self-similarities of the dyad (24a, b) 
and change in the angle (24c)

Figure 25: Orbits of the dyad in simulation 7
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Simulation 8 : triad relation, const=0.0001i, N=3, n=20,000, p=q=1, b=c=1/50

In Sim.8, we examined change in a triad relation which starts with the same configuration in Sim.2. Although the system 
is linear as in Sim.2, it has a complex constant, 0.0001i, in Eq. (15). In this case, self-similarities increase after some point in 
time, and angles among three members exhibit very curious behaviors, as can be inferred from Fig.28. In all of the three figures 
in Fig.28, there seems to be complex oscillations in angle. Moreover, the orbits of the triad depicted in Fig.29 show interesting 
and striking behaviors during 20,000 iterations.

Figure 26: Locomotion of a triad relation in a unidimensional Hilbelt spaceFigure 27: Changes in self-similarities of the triad

Figure 28: Changes in angles among the triad
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Figure 29: Orbits of the triad in simulation 8

Figure 26: Locomotion of a triad relation in a unidimensional 
Hilbelt space

Figure 27: Changes in self-similarities of the triad

Figure 28: Changes in angles among the triad Figure 29: Orbits of the triad in simulation 8
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Simulation 9 : triad relation, const=0.0001i, N=3, n=8600, p=1, q=2, b=c=1/50

In Sim.9, we examined change in a triad relation in which two of them (members, B and C) like one another but a third 
(member A) dislikes them both at the initial configuration. Such interpersonal relationships is symmetric. This system includes 
a complex constant term (0.0001i) and is quadratic. Self-similarities of this system exhibit interesting behaviors as time 
proceeds, and after long iterations they seem to diverge. As in Sim.8, angles among the three members oscillate in various 
manners, as shown in Fig.32. Orbits shown in Fig.33 are also reminiscent of such oscillations.

Figure 30: Locomotion of a triad relation in a unidimensional Hilbelt spaceFigure 31: Changes in self-similarities of the triad

Figure 32: Changes in angles among the triad
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Figure 33: Orbits of the triad in simulation 9

Figure 30: Locomotion of a triad relation in a unidimensional 
Hilbelt space

Figure 31: Changes in self-similarities of the triad

Figure 32: Changes in angles among the triad Figure 33: Orbits of the triad in simulation 9
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A simulation study of a Hilbert state space model for

changes in affinities among members in informal groups

千野　直仁

要約：
　この論文は，人間行動への数理の応用による課題解決に関するワークショップの予稿集論文の補遺
についての修正版である．その予稿集論文の補遺において，我々は予稿集論文を完全なものにするた
めに，論文の動機，表と図，などを追加した．図に描かれたいろいろな解曲線は，我々の複素差分方
程式モデルが非公式集団の成員間の親近度関係の形成や崩壊に対する膨大な可能なシナリオをカバー
することを示唆している．もとのモデル（Chino, 2002）は有限次元ヒルベルト空間のみならず不定
計量空間を状態空間として仮定しているので，このモデルは対象間の非対称な関係が本質的であると
ころのすべての種類の現象に対する幅広い適用可能性を持つであろう．補遺においては，われわれの
モデルに定数の攪乱項が加わった拡張版も提案されている．この攪乱項が可能なシナリオを興味深く
かつ劇的に豊かにすることは明白である．我々のモデルと現存する複素差分方程式モデルとの差異に
ついても議論される．最後に，我々は未だ解明されていない幾つかの問題について考察する．

キーワード： 有限次元複素ヒルベルト空間，不定計量空間，複素差分方程式モデル，縦断的非対称関
係データ行列，n- 体問題，千野・白岩の定理，三すくみ，分岐理論，安定性問題，正
則関数


