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１．Introduction
In a companion paper, we have reported the 

first part of the revised version of my handout 
presented at the 45th annual meeting of the 
Behaviormetric Society of Japan （Chino, 2017）, 
in which we have described a current difference 
equation model and have shown the possible 
theoretical scenarios of its trajectories with some 
special linear  difference equation models .  In this 
paper we shall discuss the possible theoretical 
scenarios with some nonlinear difference equation 
models , as a second part of the revised version.
As discussed in the companion paper, we assume 

the following nonlinear difference equation models 
which include the linear models:

and
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Abstract

This paper is the second part of the revised version of my paper presented elsewhere （Chino, 
2016）.  In this paper we propose a recent version of a set of complex difference equation 
models which describes changes in asymmetric relationships among objects over time.  Typical 
examples of these objects may be citation frequencies in scientific publications, amounts 
of trade among nations, connections among neurons, and so on.  Supposing that such an 
asymmetric relational data matrix or a weighted digraph is observed in an instant of time, we 
first apply the Chino-Shiraiwa theorem to the matrix and embed objects in a （complex） Hilbert 
space.  Then we shall apply our recent version of a set of general complex difference equation 
models to the initial configuration of objects embedded in the Hilbert space.  As a result, we 
have various possible theoretical scenarios of the trajectories of objects in this space.  In this 
paper, we show some of the possible scenarios of the nonlinear difference equation models in 
the special cases when the number of objects are two and three.

Key words: complex difference equation, Hilbert space, Chino-Shiraiwa theorem, dynamic 
weighted digraph, chaos, trade imbalance, neural network.



Naohito CHINO

― 8 ―

where m =1, 2 , …, q.

Here,  denotes the coordinate vector of 
member j  at time n  in a p -dimensional Hilbert 
space or an indefinite metric space.  Moreover, m 
denotes the degree of the vector function,

which is assumed to have the 
maximum value q , while
in Eq. （ 3） are complex constants .  These 
models are very general and might enable us to 
describe various possible changes in asymmetric 
relationships among members over time. 

２．Dynamical  scenarios  of  changes in 
asymmetric relationships in complex 
difference equation models

In this section, first we consider the difference 
equation models with quadratic terms.
Here, we assume the special case when m=2, 

p=1, =0, and =0 in Eqs. （1） to （3）.  
Such a system is written as

This type of system has a very desirable property 
in that we can utilize the heritage of the theory 
of the complex dynamical system developed in 
mathematics directly in classifying its trajectories.  
In fact, defining a new variable, , 
and transforming it linearly, we have a new system

and  （K. Shiraiwa, personal 
communication, April 25, 2014）.  Depending on 
the value of , we have the Mandelbrot set.
It is interesting to note that 　　, which determines 
the value of , is one of the eigenvalues of the 
coefficient matrix of the linear system discussed 
in the companion paper.  We will see later that 
even a quadratic system which is a special 
case of our general model described by Eqs. 

（1） to （3） exhibits excitingly richer dynamical 
properties of its solution curve than linear systems.

Before we discuss the dynamical scenario of 
this nonlinear system, we consider the system 
described by Eq. （5）, which is naturally induced 
from Eq. （4）. As pointed out earlier, the induced 
new system, , which is obtained 
by a linear transformation of the dif ference, 

, is of the form assumed in discussing 
the famous Mandelbrot set.  Depending on the 
complex constant term, , there exist various 
dynamical scenarios of this new system, which are 
well known in the area of the complex dynamical 
system in mathematics （e.g., Milnor, 2000; Peitgen 
& Richter, 1986; Ueda et al., 1995）.
In examining the dynamical scenarios of , we 

can utilize various theoretical results established 
in the complex dynamical system.  Some of the 
key phrases in these results are the fixed point as 
well as the periodic point （orbit）, the multiplier of 
these points, and the Fatou set and Julia set （e.g., 
Carleson & Gamelin, 1993）.
Suppose f   is a holomorphic function , that is, 

an analytic function in a complex space. Then, zf 
is called a fixed point if f　　= .  The number

Fig. 1.  Julia set for  with a para-
bolic fixed point （0.5） with the ‘・’ mark, two repelling 
periodic points of period 2 （-0.5±i） with the ‘ ’ mark, 
and six repelling periodic points of period 3 with the 
‘©’ mark, and twelve repelling periodic points of three 
4-sycles with the ‘ ’ mark.

（4）

（5）
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λ=f′　　 is called the multiplier of the fixed point.  
Here,  is the first derivative of f with respect to 
. The multiplier determines the property of the 

fixed point as follows （e.g., Carleson & Gamelin, 
1993, p.27）:

（1）Attracting if λ <1.  （If λ = 0, we refer to 
a superattracting  fixed point.）

（2）Repelling  if λ >1.  
（3）Rationally neutral  if λ =1 and λn =1 for 

some integer n .
（ 4）Irrationally neutral  if λ= 1 but λn is 

never 1.

In contrast, the periodic point  （periodic orbit , 
or cycle） is defined as follows （e.g., Milnor, 
2000, p.43）.  Let us suppose that we iterate the 
holomorphic map m times using the above function 
f .  We shall denote this m iterates by .　If , …, 
 are all distinct, and if  is equal to z , then the 

integer m 1 is called the period , that is,
　　　　  （6）

In this sense, the fixed point is a periodic orbit 
of period 1.  We can say that a periodic point of 
period m is the fixed point of .  Classification of 
the periodic orbit is the same as that of the fixed 
point discussed above （e.g., Beardon, 1991, p.91; 
Ueda et al., 1995, p.37）.  In this case, however, 
the multiplier of the periodic point  is defined 
as λ=　　　　.  By the Chain Rule, we have 

λ= 　　　　　　　　　　（e.g., Beardon, 1991）.  
The neutral point is sometimes called the 
indifferent point , and the rationally neutral point is 
sometimes called the parabolic point .

Let f be the holomorphic function on the 
complex plane, and let the divergent set of its 
collection of iterates be Ip.  The complement of 
Ip  is called the filled-in Julia  set  Kp,  and the 
boundary of Kp is called the Julia set .  The Fatou 
set  is the complement of the Julia set.  It is known 
that a point p 0 belongs to the Julia set if and only 
if dynamics in a neighborhood of p 0 displays 
“sensitive dependence on initial conditions” （e.g., 
Milnor, 2000, p.38）.
It is well known that 
（ 1）Every at tract ing per iodic point  is 

contained in the Fatou set of f .
（2）Every repelling periodic point is contained 

in the Julia set of f .
（3）Every rationally neutral （or parabolic） 

periodic point belongs to the Julia set of f ,
（4）Every irrationally neutral periodic point 

includes Siegel points  （the Fatou set） or 
Cremer points  （the Julia set）

（e.g., Milnor , 2000, pp.43-44, pp.116-131; Ueda 
et al., 1995, p.12 for the Cremer points）.

Fig. 2. Trajectories of the system with several initial 
points inside the Julia set.

Fig. 3.  Nearby trajectories which go in or out of the 
parabolic fixed point.
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It is also well known that if f  maps the Fatou 
component U  onto itself, then there are just four 
possibilities, as follows:  Either U  is the immediate 
basin for an attracting fixed point, or for one petal 
of a parabolic fixed point which has multiplier λ
=1, or else U is a Siegel disk or Herman ring .  
However, no polynomial map can have a Herman 
ring （e.g., Milnor, 2000, pp.152-153）.
Regarding the number of the above special sets, 

it is known that there always exist infinitely many 
repelling cycles .  Another important theorem is 
that a rational map can have at most finitely many 

parabolic periodic points .  In fact for a map of 
degree d 2 the number of parabolic cycles plus 
the number of attracting cycles is at most 2d－2 
（Milnor, 2000, p.140, p.112）.
Hereafter, we will discuss the dynamical scenarios 
of Eq. （5） in two cases:

Simulation Case 1 is the case when =0.25,  
that is, =　　 +0.25.
This model is contained in the Mandelbrot set, 

and is known as the “cauliflower set”.
Figure 1  shows the cauliflower set with a 

parabolic fixed point and several repelling parabol-
ic points.  It is clear that all of these repelling 
points as well as the parabolic point are contained 
in the cauliflower Julia set from the theorem on the 
relation between these points and the Julia set. 
Figure 2  shows the trajectories of the system 

with several initial points.  It is apparent that 
all the trajectories inside the Julia set except  

 converges to the para-bolic fixed point （0.5） 
as time proceeds.  To be precise, these curves are 
tangent to thereal axis.  In contrast,  which is 
located a bit to the right of the fixed point on the 
real axis diverges to infinity on the positive real 
axis.
Figure 3 zooms in the parabolic fix point to show 

trajectories going in or out of it.  This is the very 
feature of the parabolic fixed point which is well 

Fig.5. Trajectories of the three 4-cycles whose repelling 
periodic points are on the Julia set, i.e., the cauliflower 
set.

Fig.  6.  A trajectory af ter 54 i terat ions,  whose
ini t ia l  point is  almost on the Jul ia set ,  that is ,
0.700607338144023705-0.1i.

Fig. 4.  Trajectories of the two repelling periodic points 
with period 2 （-0.5±i）, and 6 repelling periodic points 
with period 3 which constitute two groups .



Dynamical scenarios of changes

― 11 ―

known elsewhere （e.g., Carleson & Gamelin, 1993, 
p.37）.
Figure 4 shows trajectories of the two repelling 

periodic points with period 2 （-0.5±i）, and six 
repelling periodic points with period 3.  It is apparent 
that these six periodic points constitute two groups, 
one being in the upper part and the other in the 
relatively lower part of this figure, both of which 
constitute 3-cycles.
Figure 5  shows the three 4 -cycles whose twelve 

repelling points are on the Julia set, that is, the 
cauliflower set.
Figure 6  is a trajectory after 54 iterations, 

whose initial point is almost  on the Julia set, 
that is, 0.700607338144023705-0.1i.  We define 
such a point as the one just before the trajectory 
falls inside the Julia set visually, and is actually 
computed by a program with high precision like 
MATLAB.

Figure 7  depicts 54 values of the real axis of 
the trajectory of the system whose initial value 
is almost on a Julia set （cauliflower set）.  It is 
apparent that these points exhibit a random 
behavior at a glance, reflecting the sensitive 
dependence on initial conditions.  Values of the 
imaginary axis also behave randomly like those of 
the real axis.
To sum up, defining a new variable, 
, and considering a new system which is 

obtained by transforming  linearly, that is, 
 （the caulif lower set）, its 

solution curves can be classified as follows, 
depending on the initial value:

（1）In the case when the initial point is 
outside the Julia set （the cauliflower）:
　The solution curves diverge to infinity.

（2）In the case when the initial point is on 

Fig. 7.  Values of the real axis of the trajectory of the system whose initial value is almost 
on a Julia set （cauliflower set）.

Fig. 8.  Julia set for 
 

 =  -0.1200138225+
0.7400145000i.

Fig. 9.  Trajectories of the one repelling 2-cycle, one 
attracting 3-cycle, and one repelling 3-cycle, with two 
repelling fixed points.
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the Julia set:
2 - 1） when it is on the parabolic fixed 

point （0.5）:
　The solution curves continue to 
stay in the fixed point.

2 -2） when it is on the repelling periodic 
points with period 2 or 3 :
　The solution curves continue 
to go around the corresponding 
periodic points.  
（In Figs. 4  to 5  we depicted up to 
4 -cycles.  Theoretically, infinitely 
many repelling points exist.）

2-3） when it is on the Julia set excluding 
the parabolic fixed point and the 
repelling periodic points:
　The solution curves continue to 
move irregularly on the Julia set.

（3） In the case when the initial point is inside 
the Julia set:
The solution curves converge to the 

parabolic fixed point in a direction 
tangent to the real axis.

It should be noticed from Simulation Case 1 
that nonlinear systems  exhibit extremely richer 
behaviors of the solution curve than linear systems 
discussed earlier, even in a quadratic dyadic 

system.  It should be noticed further that the 
above case is merely one of the examples of the 
Mandelbrot set.  Depending on the parameter  
of Eq. （5）, we encounter infinitely many dynamical 
scenarios of solution curves of this equation which 
is the transformed quadratic system of the original 
dyadic system, Eq. （4）.

Simulation Case 2 is the case when =
-0.1200138225+0.7400145000i, that is, 
= -0.1200138225+0.7400145000i （Figure 8）.
This system is almost the same as the case where 
=-0.12+0.74i, which is described by Peitgen 

and Richter （1986, p.10, Fig. 4）.  This system 
has two repelling  fixed points, thus these points 
are on the Julia set.  Moreover, it has one 2-cycle 
composed of two repelling periodic points.  It has 
two 3-cycles, one of which is a 3 -cycle composed 
of three repelling periodic points, and the other 
of which is a 3 -cycle which is composed of three 
attracting  periodic points.  Figure 9  shows these 
points.  Furthermore, it has three 4 -cycles each 
of which are composed of four repelling periodic 
points.  Figure 10 shows this.  Figure 11 shows the 
trajectory starting from an initial point in a small 
bud inside the Julia set, which is located almost at 
the bottom of this figure.

3．Discussion
In this paper we have examined some of the 

Fig. 11.  Trajectory starting from an initial point in a 
small bud inside the Julia set, which is located almost at 
the bottom of this figure.

Fig. 10.  Trajectories of the three repelling 4-cycles.
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possible scenarios of our nonlinear differ-rence 
equation models, especially those models on 
dyadic relations with a quadratic term described by 
Eq. （4） in section 2.  These models are composed 
of two difference equations with a quadratic term 
in addition to linear terms, each of which describes 
the changes in the coordinate of the corresponding 
object in a Hilbert space over time.
It is easy to show that these two equations can 

be converted into a complex difference equation, 
that is, Eq. （5） in section 2 , with a quadratic term 
and a complex constant by taking the difference 
between the coordinates of two objects.  Since Eq. 
（5） includes a Mandelbrot set  （e.g., Mandelbrot, 
1977） as a special case （Chino, 2014） depending 
on the value , this system exhibits various 
scenarios of its solution curves.  As discussed 
in the previous section, we can utilize various 
theoretical results established in the complex 
dynamical system in examining these scenarios of 

.
We conducted a small simulation study in 

which two cases were examined.  One is the case 
where = 0.25 which constitutes the so-called 
cauliflower  set, and the other is the case where 

= -0.1200138225+0.7400145000i which is 
frequently cited elsewhere （e.g., Peitgen & Richter, 
1886）.  As shown in the simulation study, even in 
the dyadic case, possible scenarios of an aspect 
of the special cases of our nonlinear difference 
equation models are innumerable in contrast with 
the linear difference equation models which were 
discussed in a companion paper.
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